

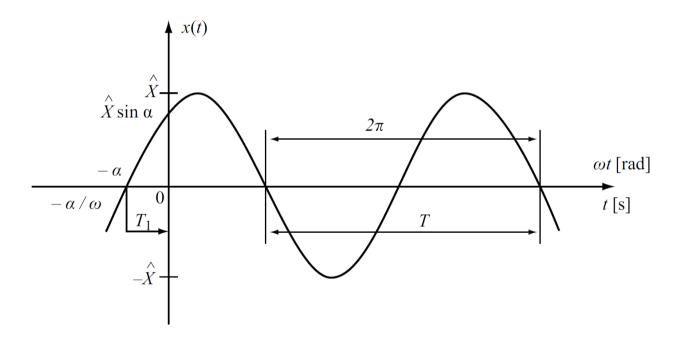
CIRCUITS EN RÉGIME SINUSOÏDAL RÉGIME PERMANENT SINUSOÏDAL

LEÇON 13

Électrotechnique I

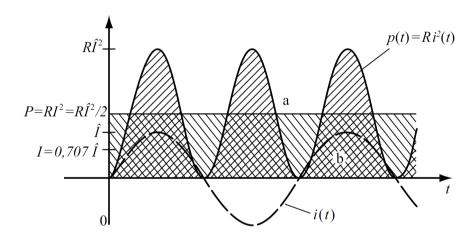
Yves PERRIARD & Paolo GERMANO Laboratoire d'Actionneurs Intégrés

INTRODUCTION


- Introduction
- Régime permanent sinusoïdal
- Grandeurs sinusoïdales
- Calcul complexe associé
- Conclusion

RÉGIME PERMANENT SINUSOÏDAL

Expression analytique et définitions des paramètres



Expression analytique et définitions des paramètres

Valeurs efficaces de grandeurs sinusoïdales

Valeurs efficaces de grandeurs sinusoïdales

Cas de la résistance

Cas de l'inductance

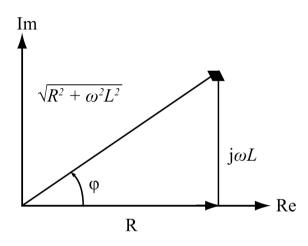


Cas du condensateur

CALCUL COMPLEXE ASSOCIÉ

Cas d'une résistance et d'une inductance en série

CALCUL COMPLEXE ASSOCIÉ



Cas d'une résistance et d'une inductance en série

CALCUL COMPLEXE ASSOCIÉ

Cas d'une résistance et d'une inductance en série

CONCLUSION

- Régime monphasé
- Représentation complexe
- Avantage du calcul complexe pour la résolution d'équation différentielle en régime permanent